Sample Challenge Exam

Try these problems. The answers can be found at the end of the exam.

1. A sample of mercury has a temperature of 215°F. Calculate the equivalent Celsius and Kelvin temperature values.

- 2. A sample has a density of 0.0365 mg/m³. Calculate the density in units of oz per yd³.
- 3. The percentage composition of a bio-organic compound was reported to be:

13.9% C 2.78% F	12.9% N	25.9% O	14.8% S	29.4%
-----------------	---------	---------	---------	-------

Enter the subscripts: C_H_N_O_S_I_

4.	For the reaction : $2 C_{10}H_{22}(s) + 31 O_2(g) \rightarrow 20 CO_2(g) + 22 H_2O(g)$
	a Haw many grams of water result when reaction of doca

Э.	How many grams of water result when reaction of decane, C ₁₀ H ₂₂ , in air yields 446 grams of
	carbon dioxide, CO ₂ ?

b. If
$$0.113$$
 moles of decane are consumed, how many molecules of water, H_2O , are produced?

5. The decomposition of nitroglycerin may be represented by the balanced equation:

$$4 \; C_{3} H_{5} N_{3} O_{9} \, (s) \; \boldsymbol{\rightarrow} \; \; 6 \; N_{2} \, (g) + 12 \; CO_{2} \, (g) + 10 \; H_{2} O \, (l) + O_{2} \, (g)$$

If 325 mL of water are produced by the decomposition of 1.837 kg of nitroglycerin, what is the:

a. Maximum theoretical yield of water?

b. Actual percentage yield of water?

c. Actual yield of CO₂?

d. Unreacted nitroglycerin?

6.	The alc	cohol in the equation below will burn completely to produce only carbon dioxide and water:
	C ₁₀ H ₂₁ C	$OH_{(I)} + O_{2(g)} \rightarrow CO_{2(g)} + H_2O_{(g)}$
	a.	Balance the equation.
	b.	How many grams of carbon dioxide can be produced from 113.0 grams of the alcohol and 255.4 grams of oxygen?
	C.	What reactant will be left over?
	d.	How many grams of the excess reactant will be left over?
7.		sample of an ideal gas at 266°C and 631 torr pressure occupies a volume of 250 cm ³ . At what temperature will the gas occupy 693 cm ³ at a pressure of 433 torr?
0	6.06	
8.	_	of CO ₂ , 7.62 g of Ne, and 2.51 g of He are confined in a 2.50 liter cylinder at 298K with an wn quantity of O ₂ . If the total pressure in the cylinder is 54.9 atm,; What is the partial pressure of O ₂ in atmospheres?

b. How many grams of O_2 are present?

9.	If the s	ample is vaporized or the hydrazine fi	d at 91°C, it has a d			ne remainder is hy exerts a pressure	
	b.	Empirical formul	a				
	c.	Molecular formu	la				
10.	Calcula	ite the molarity of	a solution that is	17.8% K₂SO₄·2H	₂O and has a der	nsity of 1.26 g/mL.	
11.			23 M H ₂ SO ₄ is mixe formed and molar			O₃. Calculate the m lution.	nass of

12. Complete the table by providing a correct answer for each empty box.

Isotope	Protons	Electrons	Neutrons	Mass Number	Atomic Mass	Atomic Number	Charge
¹⁹⁴ Pt ⁺²							
		54	77	129			
	97		151				+3

- 13. Determine the oxidation number of the **bold**, <u>underlined</u> atom and write it in the space provided.
 - a. K<u>I</u>O₄
 - b. Ca₂S₂O₃
 - c. H_2 **C**₂O₄
 - d. H₂O₂
 - e. H<u>P</u>O₃²⁻
- 14. Provide the completely correct name of formula:

IUPAC Name	Formula	Formula	IUPAC Name
Vanadium(II) phosphide		PbC ₂ O ₄ ·2H ₂ O	
Cobalt(III) hypoiodite		CdSeO ₄	
Dichromic acid		H₂S (aq)	
Acetic acid		SbF ₅	
Gold(III) thiosulfate		(NH ₄) ₂ HAsO ₃	

- 15. Write the Total Ionic and Net Ionic reactions for the following completed Conventional reactions.
 - a. $(NH_4)_2CO_3(aq) + CaCl_2(aq) \rightarrow 2NH_4Cl(aq) + CaCO_3(s)$

b.
$$NaC_2H_3O_2(aq) + HCI(aq) \rightarrow NaCI(aq) + HC_2H_3O_2(aq)$$

16.	What is the appropriate treatment for a chemical ion skin?	injury caused by	spilling concentrated sulfuric acid
17.	To what precision can an object be weighed on the	e usual electroni	c laboratory balance?
18.	To what precision in milliliters can a standard 50 m	nL buret be read	and recorded?
19.	Determine the density with units of a solid object	1	t data listed below:
	Mass of empty container	134.865 g	
	Mass of container + object	256.104 g	
	Initial graduated cylinder volume reading	45.3 mL	
	Graduated cylinder + solid volume reading	96.3 mL	

Answers to Sample Challenge Exam

- 1. 102°C and 375K
- 2. $9.38 \times 10^{-7} \text{ oz/yd}^3$
- 3. $C_5H_{12}N_4O_7S_2I$
- 4. a) 201 g H_2O b) 7.48 x 10^{23} H_2O molecules
- 5. a) 364 g H₂O b) 89.2% c) 953 g CO₂ d) 198 g nitroglycerin unreacted
- 6. a) $C_{10}H_{21}OH(l) + 15 O_{2}(g) \rightarrow 10 CO_{2}(g) + 11 H_{2}O(g)$ b) 234 g CO_{2} c) $C_{10}H_{21}OH$ d) 28.9 g
- 7. 752°C
- 8. a) 43.5 atm O_2 b) 142 g O_2
- 9. a) molar mass = 33 g/mol b) NH_2 c) N_2H_4
- 10. 1.07 M
- 11. Total volume 69.1 mL, [H+] = 0.0508 M, [NO₃-] = 0.456 M, [Ag+] = 0.405 M, [SO₄²-] = 0 M, [H₂O] = 55 M, mass of precipitate of Ag₂SO₄ (s) = 547 mg

12.

Isotope	Protons	Electrons	Neutrons	Mass Number	Atomic Mass	Atomic Number	Charge
¹⁹⁴ Pt ⁺²	78	76	116	194	195.1	78	+2
¹²⁹ Te ⁻²	52	54	77	129	127.6	52	-2
²⁴⁸ Bk ⁺³	97	94	151	248	247	97	+3

14.

IUPAC Name	Formula	Formula	IUPAC Name
Vanadium(II) phosphide	V_3P_2	PbC ₂ O ₄ ·2H ₂ O	Lead(II) oxalate dihydrate
Cobalt(III) hypoiodite	Co(HIO) ₃	CdSeO ₄	Cadmium selenate
Dichromic acid	H ₂ Cr ₂ O ₇	H ₂ S (aq)	Hydrosulfuric acid
Acetic acid	HC ₂ H ₃ O ₂ (aq)	SbF ₅	Antimony pentafluoride or
			antimony(V) fluoride
Gold(III) thiosulfate	$Au_2(S_2O_3)_3$	(NH ₄) ₂ HAsO ₃	Ammonium hydrogen arsenite

15.

a) (NH ₄) ₂ CO ₃ (aq)	a) $(NH_4)_2CO_3(aq) + CaCl_2(aq) \rightarrow 2NH_4Cl_2(aq) + CaCO_3(s)$				
Total ionic equation	$2 \text{ NH}_4^+(aq) + \text{CO}_3^{-2}(aq) + \text{Ca}^{2+}(aq) + 2 \text{Cl}^-(aq) \rightarrow 2 \text{ NH}_4^+(aq) + 2 \text{Cl}^-(aq) + \text{CaCO}_3(s)$				
Net ionic equation	$CO_3^{-2}(aq) + Ca^{2+}(aq) \rightarrow CaCO_3(s)$				
b) NaC ₂ H ₃ O ₂ (aq)	b) $NaC_2H_3O_2(aq) + HCI(aq) \rightarrow NaCI(aq) + HC_2H_3O_2(aq)$				
Total ionic equation	$Na^{+}(aq) + C_{2}H_{3}O_{2}^{-}(aq) + H^{+}(aq) + Cl^{-}(aq) \rightarrow Na^{+}(aq) + Cl^{-}(aq) + HC_{2}H_{3}O_{2}(aq)$				
Net ionic equation	$C_2H_3O_2^-(aq) + H^+(aq) \rightarrow HC_2H_3O_2(aq)$				

- 16. Wash with tap water, then with sodium bicarbonate solution and again rinse with water.
- 17. 0.001 gram or 0.0001 depending on the balance.
- 18. 0.01 mL
- 19. 2.38 g/mL